Yang Cara Belajar; Apa; Apa arti; Arti kata; Jelaskan; Sebutkan; Contoh; Kesehatan dan kecantikan; Manakah diantara persamaan persamaan berikut yang merupakan persamaan linear. Miss_hunglover 2 months ago 5 Comments. Asked by wiki @ 05/08/2021 in Matematika viewed by 19134 persons.
Kelas 8 Mapel Matematika Kategori Bab 4 - Sistem Persamaan Linier Dua Variabel Kata Kunci sistem persamaan linear dua variabel, metode substitusi Kode [Kelas 8 Matematika Bab 4 - Sistem Persamaan Linier Dua Variabel] Pembahasan Bentuk umum sistem persamaan linear dua variabel ax + by = p cx + dy = q a, b, c, d ≠ 0 serta a, b, c, d, p, q ∈ R. Penyelesaian dari sistem persamaan linear dua variabel adalah pasangan terurut x₁, y₁. Ada 3 kasus dalam sistem persamaan linear dua variabel, yaitu 1. Jika ≠ dan kedua garis tersebut berpotongan, maka sistem persamaan linear dua variabel tersebut memiliki satu penyelesaian. 2. Jika = ≠ dan kedua garis tersebut sejajar, maka sistem persamaan linear dua variabel tersebut tidak memiliki penyelesaian. 3. Jika = = dan a, b, c, d, p, dan q tidak semuanya nol serta kedua garis tersebut berhimpit, maka sistem persamaan linear dua variabel tersebut memiliki tak hingga banyak penyelesaian. Metode penyelesaiannya ada 4, yaitu 1. metode grafik; 2. metode substitusi; 3. metode eliminasi; 4. metode gabungan eliminasi dan substitusi. Mari kita lihat soal Diketahui sistem persamaan3x + 3y = 3 ... 12x - 3y = 7 ... 2Persamaan 1 dan 2 kita eliminasi y, sehingga3x + 3y = 32x - 3y = 7_________+⇔ 5x = 10⇔ x = ⇔ x = 2 ... 3Persamaan 3 kita substitusikan ke persamaan 1, diperoleh3x + 3y = 3⇔ 3y = 3 - 3x⇔ 3y = 3 - 32⇔ 3y = 3 - 6⇔ 3y = -3⇔ y = ⇔ y = penyelesaian dari sistem persamaan tersebut adalah 2, -1.b. Diketahui sistem persamaan-2x + y = 6 ... 12x - 3y = -10 ... 2Persamaan 1 dan 2 kita eliminasi x, diperoleh-2x + y = 62x - 3y = -10__________+⇔ -2y = -4⇔ y = ⇔ y = 2 ... 3Persamaan 3 kita substitusikan ke persamaan 1, diperoleh-2x + y = 6⇔ -2x = 6 - y⇔ -2x = 6 - 2⇔ -2x = 4⇔ x = ⇔ x = penyelesaian dari sistem persamaan tersebut adalah -2, 2. c. Diketahui sistem persamaan2x + 3y = 11 ... 13x - 2y = 10 ... 2Persamaan 1 & 2 kita eliminasi x, sehingga2x + 3y = 11 Ɨ33x - 2y = 10 Ɨ26x + 9y = 336x - 4y = 20__________-⇔ 13y = 13⇔ y = ⇔ y = 1 ... 3Persamaan 3 kita substitusikan ke persamaan 2, diperoleh3x - 2y = 10⇔ 3x - 21 = 10⇔ 3x - 2 = 10⇔ 3x = 10 + 2⇔ 3x = 12⇔ x = ⇔ x = 4Jadi, penyelesaian dari sistem persamaan tersebut adalah 2, 1.d. Diketahui sistem persamaanx + y = 5 ... 13x - y = 3 ... 2Persamaan 1 dan 2 kita eliminasi y, diperolehx + y = 53x - y = 3________+⇔ 4x = 8⇔ x = ⇔ x = 2 ... 3Persamaan 3 kita substitusikan ke persamaan 1, diperolehx + y = 5⇔ y = 5 - x⇔ y = 5 - 2⇔ y = 3Jadi, penyelesaian dari sistem persamaan tersebut adalah 2, 3.Keempat sistem persamaan tersebut berbeda dan penyelesaiannya juga berbeda meskipun diselesaikan dengan metode yang lain untuk belajar Semangat!Stop Copy Paste! Manakahdi antara kelima data di atas yang dapat menyatakan persamaan linear dua variabel?Jelaskan. Jawab: Menurut saya, diantara kelima data tersebut yg dapat menyatakan persamaan linear dua variabel adalah tabungan liem karena tabungan liem itu memuat dua varibel. 2). Perhatikan penyederhanaan bentuk aljabar yang dilakukan Zainul berikut
Manakah diantara sistem persamaan linear berikut yang Berbeda? jelaskan! a. 3x + 3y = 3 2x – 3y = 7 b. -2x + y = 6 2x – 3y = -10 c. 2x + 3y = 11 3x – 2y = 10 d. x + y = 5 3x – y = 3 Jawaban a. Diketahui sistem persamaan 3x + 3y = 3 … 1 2x – 3y = 7 … 2 Persamaan 1 dan 2 kita eliminasi y, sehingga 3x + 3y = 3 2x – 3y = 7 _________+ ⇔ 5x = 10 ⇔ x = ⇔ x = 2 … 3 Persamaan 3 kita substitusikan ke persamaan 1, diperoleh 3x + 3y = 3 ⇔ 3y = 3 – 3x ⇔ 3y = 3 – 32 ⇔ 3y = 3 – 6 ⇔ 3y = -3 ⇔ y = ⇔ y = -1. Jadi, penyelesaian dari sistem persamaan tersebut adalah 2, -1. b. Diketahui sistem persamaan -2x + y = 6 … 1 2x – 3y = -10 … 2 Persamaan 1 dan 2 kita eliminasi x, diperoleh -2x + y = 6 2x – 3y = -10 __________+ ⇔ -2y = -4 ⇔ y = ⇔ y = 2 … 3 Persamaan 3 kita substitusikan ke persamaan 1, diperoleh -2x + y = 6 ⇔ -2x = 6 – y ⇔ -2x = 6 – 2 ⇔ -2x = 4 ⇔ x = ⇔ x = -2. Jadi, penyelesaian dari sistem persamaan tersebut adalah -2, 2. c. Diketahui sistem persamaan 2x + 3y = 11 … 1 3x – 2y = 10 … 2 Persamaan 1 & 2 kita eliminasi x, sehingga 2x + 3y = 11 Ɨ3 3x – 2y = 10 Ɨ2 6x + 9y = 33 6x – 4y = 20 __________- ⇔ 13y = 13 ⇔ y = ⇔ y = 1 … 3 Persamaan 3 kita substitusikan ke persamaan 2, diperoleh 3x – 2y = 10 ⇔ 3x – 21 = 10 ⇔ 3x – 2 = 10 ⇔ 3x = 10 + 2 ⇔ 3x = 12 ⇔ x = ⇔ x = 4 Jadi, penyelesaian dari sistem persamaan tersebut adalah 2, 1. d. Diketahui sistem persamaan x + y = 5 … 1 3x – y = 3 … 2 Persamaan 1 dan 2 kita eliminasi y, diperoleh x + y = 5 3x – y = 3 ________+ ⇔ 4x = 8 ⇔ x = ⇔ x = 2 … 3 Persamaan 3 kita substitusikan ke persamaan 1, diperoleh x + y = 5 ⇔ y = 5 – x ⇔ y = 5 – 2 ⇔ y = 3 Jadi, penyelesaian dari sistem persamaan tersebut adalah 2, 3. Keempat sistem persamaan tersebut berbeda dan penyelesaiannya juga berbeda meskipun diselesaikan dengan metode yang sama. 121 total views, 1 views today
Diantara persamaan-persamaan berikut, manakah yang merupakan sistem persamaan linear dua variabel? a. 4x+5y=13 dan 2p+3q=7 b. 3x+2y=5 dan x=3y+4 c. 2p+3q=8 dan pāˆ’2pq=āˆ’3 d. jawaban dari pertanyaan tersebut adalah B. Perhatikan penjelasan berikut ya. Sistem persamaan linear dua variabel (SPLDV) adalah suatu persamaan yang terdiri dari
Sistemkoordinat Cartesius (UK / k ɑː ˈ t iː zj ə n /, US / k ɑːr ˈ t i Ź’ ə n /) adalah sistem koordinat yang menetapkan setiap titik secara unik dalam bidang dengan serangkaian koordinat numerik, yang merupakan jarak yang bertanda titik dari dua garis berorientasi tegak lurus tetap, diukur dalam satuan panjang yang sama. Setiap garis referensi disebut sumbu koordinat atau hanya
Diantara Sistem persamaan linear dua variabel berikut ini, manakah yang lebih mudah untuk menggunakan metode substitusi ketika menentukan selesaiannya. Jawaban : Yang lebih mudah iyalah persamaan A dan B, karena pada persaamaan kedua A yaitu 4x - y = 3 dapat diubah menjadi y = 3 - 4x, sedangkan pada persamaan pertama B yaitu 4x -y = 3 dapat . 159 276 397 370 226 5 65 128

manakah diantara sistem persamaan linear berikut yang berbeda jelaskan